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As is knolvn [1 and 21, the deformations of thin elastic loaded shells are quite sensitive to 
small initial deviations of the middle surface from the ideal shape. In particular, this is 
manifest in the large spread in experimental data in stability tests on shells. Stochastic 
problems in shell theory are customarily solved by applying direct methods. The distributed 
system is hence replaced by a system, equivalent in some sense, with a finite number of 
degrees of freedom. Approximate solutions of this kind leave a feeling of dissatisfaction. 
Moreover, if we start from the linearized equations, then under some sufficiently broad as- 
sumptions, exact solutions of the stochastic boundary value problem are obtained success- 

fully [3]. 
The problem is solved below on the basis of equations obtained by linearizing the shell 

theory equations in the neighborhood of the initial state of stress. An additional assumption 
on the smallness of the scale of the initial deviations and of the scale of their correlation 
as compared to the characteristic dimensions of the middle surface is used, as is also an 
assumption on the homogeneity of the field of initial deviations. General formulas are de- 
duced for the correlation functions, the variance and the spectral densities of the parame- 
ters of the stress-strain state of the shell. The results are expressed in terms of tabulated 
functions for a broad class of isotropic initial deviations. This permits a study of the depen- 
dence of the correlation properties of the displacements, deformations and stresses on the 
properties of the initial deviations and on the initial stresses in the middle surface. 

1. Let us consider a thin elastic shell with initial deviations from the ideal shape. Let 

the external loading be such that a pure membrane state of stress originates in the ideal 
shell, the buckling modes are rapidly varying functions of the coordinates, and the critical 

parameters depend negligibly slightly on the shell dimensions and the boundary conditions 
on its outline. Moreover, let the deviations from the ideal shape be sufficiently small, and 
have sufficiently small scales of variability and correlation. For loadings not to close to 
the critical, displacements of points of the middle surface of a loaded shell will possess 
these properties. Nonlinear shell theory equations of Mushtari-Vlasov type [4] shall be used 
in the form: 

DAAw- s”?+ (baB + V7,VBw) VhVJ = p 

( > 

(1.1) 
(l/Eh) AAx + sahs+ baa + $ V,VBW VhV,w = 0 

Here w (x1, x2) is a function of the normal displacements, x(x1, x2) is a function of the 

tangential stress resultants, D is the cylindrical stiffness, E the elastic modulus, h the 
shell thickness, p the normal loading intensity, bda tensor of the initial curvature of the 

middle surface, sap the unit antisymmetric tensor on the middle surface. If the deviations 
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from the ideal surface sre slighht, we can then put 

b,, = b(Q)@ +- f&q@ (1.2) 
where do 

d 
is the curvature tensor of the ideal tensor, 8 is a small parameter. Neglecting 

the change in metric because of membrane deformation, we seek the solution of (1.1) as 
w = HI?, + E2W2 f *.. , x=x0 f% +E2xa +*.. (1.3) 

Substitution of (1.2) and (1.3) yields after comparing terms containing 8, 

DAAwr 7 s~“s~%~~(~)V~V~X~ - @‘V,V$u, = N”“V,‘i$jwu 

(1 ] 2%) AAx, Jr s=~~~~~~~~‘~V~~~~t = 0 @*Q 

It has here beentaken into account that Pk ,$i* b$ Ah A,, x0 = p. Moreover, the 
notation N @ has been introdnced for tbe tensor of the initial membrane stress resdtants, 
and the correction to the curvature tensor (1.2) 6ae been expressed in tenas of the function 
of the-initial deviations wa 4% 1, x 2) 

SahSppvq&~‘, = Nag* &p(l) = v,vpw, 
Since, by assumption, the scales of variation and correlation of the functions wo, w t 

and x1 sre small as compared with the scales of variation of the metric properties of an 
ideal middle surface, (1.4) csu be simplified by being rewritten in orthogonal coordinates 
(the lines of curvature) I = z , with unit metric tensor, and by replacement of the tensor 
derivatives by the correspon b* 

x2 
rug partial derivatives 

Here R,, R, are the principal radii of curvature of the ideal middle surface; the rule of 
summation over the subscripts a, p has been retained. 

2. Let wo (r) be a random function of the coordinates, with mathematical expectation 
zero. Let us consider a domain sufficiently remote from the boundaries and other lines of 
distortion. It can be expected that under the asaumptions made above on the nature of the 
loading, and for a rapidly changing field of initial deviations w (r) the influence of the 
boundaries on the shell behavior in the inner domain will be su!ficiently small. Then the 
influence of the boundaries can generally be neglected by replacing the boundary conditions 
by the requirement of boundedness of the fnnctions at infinity. If the shell parameters and 
the initial membrane stress resultants can be’assumed constent on a sufficiently Large de 
mainoof the middle surface, and the function of the initial imperfections w. (r) can be con- 
sidered as a homogeneous rsudom field, then the stochastic problem is solved by a well 
known method 131. 

A homogeneous random field #{t) admits of spectral representation as a stochastic 
Fourier-Stieltjes integral 

cp(r) = 5 eikr dZ (k ) (k = kl, h) (2.1) 
The distribution function Z (k) satisfies the relationship 

(dz (k) dZ* (k’)) = a, (k) 6 (k - k’) dk dk’ (2.2) 
where the aagnlar brackets denote the average over the set of realizations, the asterisks 
denote the transition to the complex conjugate, & = dk,dk,, 6(k) is the two-dimensionaI 
delta fnsetion, The ~~~tio~~~~ 2 0 $8 the spectral density of the random field’@(r), Tits 
corresponding correlation function R f&, where ‘p = r - 
cwibg to tha W~~e~~~~~e theorem 

tt is expressed in terms of @ @) ao 

R(p) = Rs 8 at(k)&‘dk 
50 

(2.3) 
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I,et us represent the random fields wo (t), wt (r) and x1 (t) as integrals of type (2.1), and 

let us take into account that the fields are interrelated by means of (1.5). Utilizing formu- 

las of type (2.2), we obtain the following formulas for the spectral densities of the fields 

to1 (f) and x1(r): 

@w,(k) = F2 (k) Q’,,(k), Qx, (k) = C* (k) O,,,(k) 

k&N,fd 
F tk) = k’D + (Eh / k*) (k12/ Rz f kz2 / RI)“+ k&Nag 

C(k) =$ (g + z) J’(k) (k’ = kc + kz2) 

(2.4) 

The spectral densities of the remaining parameters of the stress-strain state of the shell 

are expressed in terms of awl (k) and ax, (k), as well as in terms of their joint spectral 

density 

%,x, (k) = F(k) G (k) Q),,(k) 
Thus, the fluctuating stresses 0 t 1 at the points z = f h/2 are defined as 

1 a2x1 Eh 
011 = h a22” t_ 2 (1 _ $) 

( 
+$+vS) 

Ilence, taking account of (2.1) and (2.2) we obtain the spectral density 

(2.5) 

(Zc;) 

Formulas of the type (2.4) to (2.6) permit some general deductions on the change in 

spectrum composition of the fields w t (r), x1 (r) etc. as a function of the nature and magni- 

tude of the initial membrane stress resultants. Let us examine the expression for F(k). In 

substance, the function F (IL) is the transfer function of a system connecting the initial de- 

viations of the middle surface from its ideal shape with the additional deviations w (r). 
Formulas (2.4) to (2.6) remain meaningful although the function F (k) has no real pores. The 

equation to find the poles 

k4D + .$ (g + g) -j- k,kpATa9 = 0 (2.7) 

agrees with the equation to find the critical stress resultants in the linear theory of shell 

stability. Let us recall that the case N,, > 0, N > 0 corresponds to tension. Therefore, 

the theory is applicable although the stress resu tants are less than their critical values 3” 

determined by linear theory. 

We find the wave numbers corresponding to the most rapidly growing deviations from the 

condition 

aF (k) aF (k) = o 
-=akz 8kl (2.8) 

Let the loading be given with the accuracy of the parameter p. Replacing Nap by pNap 

in (2.7), we obtain that the critical value of the loading parameter is 

p,(k)==- k klN ~ln+~(+&+~)‘] 
d ;I a,? 

(?.!I) 

On the other hand, taking account of (2.9), formula (2.4) for F(k) is written for p < p+(k) 
as 

F(k)= ’ 
P. (k) - P 

It is hence seen that the functions p+ (k) and F(k) take on stationary values for the iden- 
tical wave numbers k 1, k 2, The transfer function F (k) therefore takes on the maximum val- 

ue for deviations coincident with the buckling modes in linear theory. Precisely these de- 

viations grow most rapidly, although the linearized equations (1.5) remain applicable. 

3. The determination of the correlation functions by means of the spectral densities 
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(2.4) to (2.6) reduces to the two-dimensional Fourier transform (2.3). This transformation 

can be carried out only by numerical methods in the general case. Meanwhile, there is a 

broad class of problems for which analytical calculations can be completed. 

For example, let us consider’s spherical shell loaded by uniform pressure, If the initial 

imperfections of the shell form an isotropic field, the integral in (2.3) reduces to a single 

integral in the “radial” wave number k. Indeed, the formulas for the correlation functions 

of the fields w t (r) and x t(r) become 

R,,(p) = Re [ F2 (k) Ow, (k) eikp dk 
--cI) 

R,,(p) = Re 8 Ga(k)CRD,,(k)eik~dk (3.1) 

where F(k), G(k) and @,o (k) depend only on the modulus k. Let 4,) [, denote components 

of the vector ‘p = r - rl. Transforming to polar coordinates 5‘, = p cos q5, [, = p sinq5, k 1 = 
= k co&, k, = k sin 8 and using the known relationship 

az 

c I cos (kp cos 9) de = 2nJo (kp) 
0 

we reduce the first of Formulas (3.1) to 

R,,(p) = 24 F2(k)Q,,(k)Jo(kp)kdk (3.2) 
0 

The formulas for the correlation function of the other parameters as well as for the mu- 

tual correlation functions are transformed analogously. 

‘PO 
A broad class of isotropic two-dimensional random fields is given 

with the aid of spectral densities of the form 

R,,(k) = y 
(1 + Jc~ / k$)“ 

(3.3) 

0.16 Here q’, k, and n are constants; the parameter l/k, hence char- 
acterizes the scale of correlation. The n = 2 case corresponds to a 

two-dimensional Markov field (the analog of the exponential correla- 

tion function of one independent variable). For n > 2 the formula 

describes a differentiable random field. We hence- 

forth assume n to be an integer (n = 3, d,...). The 

correlation function of the initial deviations is de- 

fined by a formula of type (3.2) 

4 r 
R,,, (P) = zx\v i JO (kp) kdk = 

; (1 + h.2 / ko2)” 

Fig. 1 
z 2nk,,T 

(kop)n-1 K,_, (kop) 

Y-l (n - I)! 
(3.4) 

where Kn is the llacdonald function of order n. A graph of the function 

2& R, I= (PO POP) =vo (4 
is shown in Fig. 1. 

4. The method of contour integation [s] can be used to calculate the correlation func- 
tions for LUG (r) and x1(r) in the case of an isotropic field of deviations with a spectral den- 

sity of type (3.3). 

For example, let us examine the correlation function of the deflection w1 (r) in the form 
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(3.2). Let OS write it as 

R,, = 2nk,a Y cp (T) 
and let us evaluate the integral 

where 

’ c=, 
p4&p-1, 

[ 12 (1 - vyj’*, z = kop 

Let us replace the integrand by the complex variable function 

f(z)- 
11p (zr / x0) 25 

(x0% + ZS)” (24 + pz2 + I)* 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Here Ht’ (ZT / X0) is the zero order Hankel function. If the initial stress resultant N 
is greater than the critical value, i.e., 02, - 2, then the function f(z) is holomorphic 

everywhere in the upper half-plane including the real axis as well, with the exception of a 

finite number of poles and branch points z = 0. Let us compute the sum of the residues 

around all the poles of the function f(t) in the upper half-plane. Expression (4.2) becomes 

q@) = I-- IF 
zn 1 (n - I)! 

1 d 
--- 

271 dn C Y14K0 (YlT / x0) 

I 

1 d ra4Ko (TZZ/XO) --- 

(x02- ~12)~ (~22 - ~1")" 272 dy2 (x02- 722)"(~12--7232 I 

r21,2 = 'i2 [P" T (P- 4p1 (4.5) 
A particular case of (4.5) is the formula for the dimensidnless correlation function of 

plate displacements (the formula is suitable only for tensile stresses in the middle surface) 

ccp(z) = (-1)“1 
2’L-1 (n - I)! (X&Y)“’ [(Xo:32)J + 

+ @02 - Pz) (T I xo) Kl (Pf / XO) - .83nKo (pi / XO) 
2p (x02 - pz)n+l 

(4.6) 

The notation (4.3) has been retained in (4.6). The parameter R in the coefficient k+ is 
here the characteristic length. 

5. Let us consider the case n = 3 in more detail. The expression for the dimensionless 

correlation function (4.5) becomes 

c’p ($ = “lyl~K1 (Y17 / x0) + a2y27 K, (r2D %> + a3 & hl’c / %I) + 

+ a4Kl (Y2T / %I) + (a5 + w2) Kl CT) + a7t Kl (T) (5.1) 

The coefficients 3 are expressed in terms of x,,, yl and y2 as follows: 

Y12 
=l = 2 (%4+ 712)s ($- ?q)So ; 

Y82 

a2 - 2 (xoZ-- @)* (Yl2 - r22@o 

43 = Yl2 (3714 - YPY22 - 2x0922) 

(x02 - Y12)4 (y22 - Yl2)2 ’ 

44 = Y22 (3Y24 - Y&22 - hlh2) 

(x02 - Y22)4 (Yl” - Y2V 

45 =I 
3H08 - 8xo4YPYa2 + 2xo2Y12Ys2 (712 + Ys2) + r&24 

(xog - 71’14 (x02 - Yl2)4 (5.2) 

1 
=6= 8(,Q a7 = 

S&4 - x02 (x12 + 722) - 3TlW 
- 71’)’ (d - r2Y ’ 4 (x2 - Tl’Y (e - rrv 
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An analogous formula for a plate will be 

+ 
z2Ko w 

8x0’ (~0~ - p’)” + 
3 [Ko (VI - Ko (Br / %)I 

(x0* - P’)’ (5.3) 

Passage to the limit in (5.1) and (5.3) as’7 + 0 is of interest since we then obtain the 
corresponding values of the dimensionless variance. For a plate such a limit passage 
yields: 

(5.4) 

The variance for the deflection function of a she11 is expressed differently depending on 
the valae of the loading parameter R. If p2 > 2, the coefficients y, and y, are real. In this 
case the variance is 

(5.5) 

q(0) = bl+ b,ln ?+w? 

For - 2 < /3 2< 2 the coefficients yt, yz are complex. The for- 
mula for the variance will be 

ccp (0) = cl + c2 arctg (‘&>” + c&m0 (5.6) 

where the coefficients bt and cl depend on xlf and 6. 

A graph of the correlation function (5.3) for a plate experiencing 

ltilateral tension is shown in Fig. 2. The additional displace- 
meats w (r) have a weaker correlation than the in- 
itial deviations. The correlation is magnified as 
the loading parameter fl grows. For fl+ bo we have 

~~~u~,~~~~~~ ;;;;, 
the initial deviations “straigh- 
* 

4 f Resuits of computations using (5.5) and (5.6) 

Fig. 2 are shown in Fig. -3. The loading parameter 022 

=NR[12 (1 -v2)]“/Eh2, is plotted along the horizontal, 

and the dimensionless variance of the displacement ul,(t) 
in a spherical shell along the vertical. The parameter 

XO= k,/k, was taken equal to 0.5, 1, 2 and 4. Moreover 
a curve which corresponds to the limiting case of x0+ OQ 

(the delta-correlated field of initial deviations) is saper- 

posed in Fig. 3. The right branches of the curve correa- 

pond to tensile stress resultants. We have 4(O) 4 d,(O) 
forfl+00. The left branches correspond to compressive 

stress resultants. As B + - 2, i.e., as the pressure tends 

to its critical value, determined by linear theory, the 

variance of the displacement wt (r) tends to infinity. 

Fig. 3 
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